打开主菜单

谷雨文档中心 β

NBDK-L4:基础实验教程

Jinx讨论 | 贡献2019年1月23日 (三) 11:00的版本 gyu_adc.c

目录

1 教程介绍

1.1 工程简介

NBDK-L4开发板基础实验包含如下,在这里给大家简单说明一下每个例程中讲解的内容及关键节点。

实验简介
实验名称 内容简介 功能
01-led实验 驱动LED点亮 GPIO推挽输出
02-马达实验 驱动马达振动 GPIO推挽输出
03-蜂鸣器实验 驱动蜂鸣器发声 GPIO推挽输出

1.2 工程目录简介

大家打开任意一个基础例程,都会看到如下的4个目录(Drivers、Inc、MDK-ARM、Src)及clean.bat文件。

其中clean.bat是用于清除工程编译生成的中间文件。例如我们想拷贝一个编译过的工程,工程有200M左右大小,我们点击clean.bat清除一下编译生成的中间文件,则工程大概会缩小到100M左右,此时工程只剩下了库文件、用户文件,以及编译生成的hex文件。

从上图可以看到,四个主目录下分别包含的一些文件,这边给大家简单的介绍一下这边文件大概的功能。

Drivers:

STM32驱动文件目录,也就是大家常说的hal库,里面包含了hal(硬件抽象层)相关的文件。

主要就是有RCC时钟、Flash内存,以及大家常用的外设(例如uart、spi、adc等等)的一些库文件。

Inc:

用户.h头文件,用户文件的头文件一般都放到这边,也可自己另存其他位置,但是需要在keil中添加头文件所在的路径。

添加新路径的方式如下图所示,可以看到../Inc这个路径已经事先添加进去了。

MDK-ARM:

工程目录,主要是两个工程文件“.uvoptx”以及".uvprojx"(keil打开的是这个)。剩下的文件比较重要的是Output目录下编译生成的“.hex”文件。

Src:

用户.c文件,用户自己开发的一些驱动文件(外设驱动等等),以及main文件所在的目录。

1.3 常用文件简介

针对试验工程中的常见文件,我们以开发者的方式来给大家做一个简单的介绍。具体每个文件中的源码的详细说明,大家可以参照每个试验下的源码详解。

常见文件简介列表
文件名 说明
stm32l4xx_hal_conf.h 路径位于Inc目录下,里面主要是一些宏定义,用于选择本工程所使用的库文件。这边选择的库文件,就是目录简介中提到的HAL库。
main.c: main()所在的文件,keil中我们配置了run to main(),也就是说工程从main()函数开始执行,所以main.c就是我们工程的主文件。
stm32l4xx_hal_msp.c msp(main stack pointer)主栈堆指针初始化的文件。我们重定义外设引脚选择的时候,STM32Cube生成的硬件引脚重定义函数默认也位于此文件下,但是为了方便,我们一般将其复制到各自的驱动文件下。
stm32l4xx_it.c 中断配置文件,用于存放工程的中断。STM32Cube生成的中断函数默认位于此文件下,同样为了方便起见,我们一般将各自的中断函数放到各自的驱动文件下。
gyu_util.c 从STM32Cube生成的main文件中独立出来的部分。主要用于处理工程的时钟选择,包含系统时钟、总线时钟以及外设时钟。
stm32l4xx_hal_xx HAL库文件。
gyu_xx 由谷雨物联编写的文件,大部分是外设的驱动文件。

2 01-led实验

第一个实验我们给大家带来的是最简单的外设控制,也就是 IO 口操作,通过这个实验我们可以了解到如何让STM32L476RC的一个 IO 输出高低电平,并以此控制 LED 的点亮和熄灭。  

2.1 STM32L476 IO简介

每个GPIO引脚都可以通过软件配置为输出(推挽或漏极开路),输入(带或不带上拉或下拉)或外设备用功能。 大多数GPIO引脚与数字或模拟备用功能共用。 由于它们在AHB2总线上的映射,可以实现快速I / O切换。 如果需要,可以锁定I / O备用功能配置序列,以避免虚假写入I / O寄存器。

经过上一段对GPIO口模式的说明,在这里对它的工作模式进行一个小结,它一共有八种组合,即有八种可配置的工作模式,分别是:

  1. 输入浮空
  2. 输入上拉
  3. 输入下拉
  4. 模拟
  5. 带上拉或下拉的开漏输出
  6. 带上拉或下拉的推挽输出
  7. 带上拉或下拉的复用功能推挽
  8. 带上拉或下拉的复用功能开漏

2.2 硬件设计

选择STM32L4引脚PA15作为LED的控制引脚,PA15高电平时点亮LED。

2.3 实验准备

  1. 使用miniUSB线及10pin排线,通过Jlink仿真器连接PC端和开发板。
  2. 使用Keil打开基础实验 01-led实验工程。
  3. 下载程序,并完成功能测试。

2.4 实验验证

下载完成后,可以看到开发板上的LED灯周期闪烁,点亮及熄灭的周期时间为500ms。

2.5 源码详解

本节中的源码说明,仅针对此例程中的重要功能,详细的源码介绍请大家参照代码后的注释。

2.5.1 stm32l4xx_hal_conf.h

此文件位于“01-led实验\Inc”路径中,主要用途是选择使能此例程使用到的库文件,一般情况下,我们默认需要使用的为前5个,包含芯片、flash、电源、时钟以及NVIC。

此例程因为我们需要展示IO的使用,所以我们额外使能 HAL_GPIO_MODULE_ENABLED。

103 // 使能的宏
104 #define HAL_MODULE_ENABLED          // 芯片
105 #define HAL_FLASH_MODULE_ENABLED    // Flash
106 #define HAL_PWR_MODULE_ENABLED      // 电源
107 #define HAL_RCC_MODULE_ENABLED      // 时钟
108 #define HAL_CORTEX_MODULE_ENABLED   // NVIC
109 
110 #define HAL_GPIO_MODULE_ENABLED     // GPIO

2.5.2 main.c

main函数,我们的例程由此处开始执行,首先调用HAL_Init()函数初始化我们的模块,接着调用SystemClock_Config()函数初始化此例程用到的时钟,具体有哪些时钟被初始化,在gyu_util.c部分有详细说明。

接下来我们初始化LED引脚配置,并且在while()循环中周期点亮、熄灭LED。

31 int main(void)
32 {
33   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
34 	// 重置所有外设、flash界面以及系统时钟
35   HAL_Init();
36 
37 	// 配置系统时钟(包含振荡器、系统时钟、总线时钟等等)
38   SystemClock_Config();
39 	
40   // 初始化LED引脚
41   LED_Init();
42 	
43   // 
44   while (1)
45   {
46 		LED_SET(GPIO_PIN_SET);			// 设置LED引脚(PA15)输出高电平,LED点亮
47 		HAL_Delay(500);							// 延时500ms
48 		LED_SET(GPIO_PIN_RESET);		// 设置LED引脚(PA15)输出低电平,LED熄灭
49 		HAL_Delay(500);							// 延时500ms
50   }
51 }

2.5.3 gyu_util.c

时钟初始化函数,用于配置我们模块运行的系统时钟、AHB高性能总线时钟、APB外设总线时钟以及单个外设的时钟。

主要包含了三个部分的初始化配置。

1.内部或者外部振荡器选择,也就是选择时钟信号的来源,是内部振荡,还是外部晶振。

2.时钟配置,选择系统、AHB总线及APB总线的时钟来源。

3.外设时钟配置,选择外设时钟来源。

为了给大家比较全面的展示各个时钟,我们振荡器选择HSI(内部16MHz高频)、HSE(外部8MHz高频)以及LSE(外部32.768KHz低频)三个。选择HSE作为PLL(锁相回路)时钟源,配置PLLCLK为80MHz。配置系统时钟SYSCLK、AHB高性能总线、APB外设总线(APB1及APB2)为80MHz。另外我们还分别配置了ADC、UART以及I2C的外设时钟。

基础实验中的其他例程,大部分都是使用的相同的时钟配置函数,有特殊的时钟使用,将会在对应例程的源码详解中做针对性说明。

 49 void SystemClock_Config(void)
 50 {
 51   RCC_OscInitTypeDef RCC_OscInitStruct;     // 定义RCC内部/外部振荡器结构体
 52   RCC_ClkInitTypeDef RCC_ClkInitStruct;     // 定义RCC系统,AHB和APB总线时钟配置结构体
 53   RCC_PeriphCLKInitTypeDef PeriphClkInit;   // 定义RCC扩展时钟结构体
 54   
 55   // 配置LSE驱动器功能为低驱动能力
 56   __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
 57 
 58   // 初始化CPU,AHB和APB总线时钟
 59   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE
 60                               |RCC_OSCILLATORTYPE_LSE;        // 设置需要配置的振荡器为HSI、HSE、LSE
 61   // 配置HSE
 62   RCC_OscInitStruct.HSEState = RCC_HSE_ON;                    // 激活HSE时钟(开发板外部为8MHz)
 63   // 配置LSE
 64   RCC_OscInitStruct.LSEState = RCC_LSE_ON;                    // 激活LSE时钟(32.768KHz,低驱动)
 65   // 配置HSI
 66   RCC_OscInitStruct.HSIState = RCC_HSI_ON;                    // 激活HSI时钟
 67   RCC_OscInitStruct.HSICalibrationValue = 16;                 // 配置HSI为16MHz     
 68   // 配置PLL
 69   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;                // 打开PLL
 70   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;        // 选择HSE时钟作为PLL入口时钟源,8MHz
 71   RCC_OscInitStruct.PLL.PLLM = 1;                             // 配置PLL VCO输入分频为1,8/1 = 8MHz
 72   RCC_OscInitStruct.PLL.PLLN = 20;                            // 配置PLL VCO输入倍增为20,8MHz*20 = 160MHz
 73   RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;                 // SAI时钟7分频,160/7 = 22.857143MHz
 74   RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;                 // SDMMC、RNG、USB时钟2分频,160/2 = 80MHz
 75   RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;                 // 系统主时钟分区2分频,160/2 = 80MHz
 76   // RCC时钟配置,出错则进入错误处理函数
 77   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 78   {
 79     _Error_Handler(__FILE__, __LINE__);
 80   }
 81   
 82   // 初始化CPU,AHB和APB总线时钟
 83   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
 84                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; // 需要配置的时钟HCLK、SYSCLK、PCLK1、PCLK2
 85   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;             // 配置系统时钟为PLLCLK输入,80MHz
 86   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;                    // AHB时钟为系统时钟1分频,80/1 = 80MHz
 87   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;                     // APB1时钟为系统时钟1分频,80/1 = 80MHz
 88   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;                     // APB2时钟为系统时钟1分频,80/1 = 80MHz
 89   // RCC时钟配置,出错则进入错误处理函数
 90   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) // HCLK=80MHz,Vcore=3.3V,所以选择SW4(FLASH_LATENCY_4)
 91    {
 92     _Error_Handler(__FILE__, __LINE__);
 93   }
 94 
 95   // 初始化外设时钟
 96   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART2
 97                               |RCC_PERIPHCLK_LPUART1|RCC_PERIPHCLK_LPTIM1
 98                               |RCC_PERIPHCLK_I2C2|RCC_PERIPHCLK_ADC;  // 需要初始化的外设时钟:USART1、USART2、LPUART1、LPTIM1、I2C2、ADC
 99   PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;     // 配置串口USART1时钟为PCLK2,80MHz
100   PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;     // 配置串口USART2时钟为PCLK1,80MHz
101   PeriphClkInit.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_HSI;     // 配置LPUART时钟为HSI,16MHz
102   PeriphClkInit.I2c2ClockSelection = RCC_I2C2CLKSOURCE_PCLK1;         // 配置I2C2时钟为PCLK1,80MHz
103   PeriphClkInit.Lptim1ClockSelection = RCC_LPTIM1CLKSOURCE_LSE;       // 配置LPTIM1时钟为LSE,32.768KHz
104   PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;         // 配置ADC时钟为PLLSAI1,现在为80MHz,下面会重新定义
105   PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_HSE;            // 配置PLLSAI1时钟为HSE,8MHz
106   PeriphClkInit.PLLSAI1.PLLSAI1M = 1;                                 // 配置PLLSAI1分频为1
107   PeriphClkInit.PLLSAI1.PLLSAI1N = 8;                                 // 配置PLLSAI1倍增为8
108   PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7;                     // SAI时钟7分频,64/7 = 9.142857MHz
109   PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2;                     // SDMMC、RNG、USB时钟2分频,64/2 = 32MHz
110   PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2;                     // 系统主时钟分区2分频,64/2 = 32MHz             
111   PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK;        // 配置PLLSAI1输出为ADC1时钟,也就是配置ADC1时钟,32MHz
112   // 外设时钟配置,出错则进入错误处理函数
113   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
114   {
115     _Error_Handler(__FILE__, __LINE__);
116   }
117 
118   // 配置内部主稳压器输出电压,配置为稳压器输出电压范围1模式,也就是:典型输出电压为1.2V,系统频率高达80MHz
119   if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
120   {
121     _Error_Handler(__FILE__, __LINE__);
122   }
123 
124   // 配置系统定时器中断时间,配置为HCLK的千分频
125   HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
126 
127   // 配置系统定时器,配置为HCLK
128   HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
129 
130   // 系统定时器中断配置,设置系统定时器中断优先级最高(为0),且子优先级最高(为0)
131   HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
132 }

2.5.4 gyu_led.c

此文件用于配置LED控制引脚,在LED_Init()函数中我们初始化PA15为推挽输出,并且使能GPIOA时钟,初始化PA15默认输出低电平。

31 void LED_Init(void)
32 {
33 	GPIO_InitTypeDef  GPIO_InitStructure;               // 定义引脚参数结构体
34 
35 	__HAL_RCC_GPIOA_CLK_ENABLE();                       // 使能GPIOA时钟
36 
37 	GPIO_InitStructure.Pin= GPIO_PIN_15;                // 引脚编号为15
38 	GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;      // 推挽输出
39 	GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_LOW;     // 低频率
40 	GPIO_InitStructure.Pull = GPIO_PULLDOWN;            // 下拉
41 	HAL_GPIO_Init(GPIOA, &GPIO_InitStructure);          // 初始化PA15
42 	
43 	HAL_GPIO_WritePin(GPIOA, GPIO_PIN_15, GPIO_PIN_RESET);    // 设置PA15默认输出低电平
44 }

LED_SET()函数留给大家控制LED灯点亮或者熄灭,参数可选为GPIO_PIN_RESET(低电平)或者GPIO_PIN_SET(高电平)。

54 void LED_SET(GPIO_PinState pinSate)
55 {   
56 	HAL_GPIO_WritePin(GPIOA, GPIO_PIN_15, pinSate);   // 设置PA15输出
57 }

3 02-马达实验

振动马达实验通过控制 GPIO 引脚输出高低电平,用于控制马达振动或停止 。

3.1 STM32L476 IO简介

每个GPIO引脚都可以通过软件配置为输出(推挽或漏极开路),输入(带或不带上拉或下拉)或外设备用功能。 大多数GPIO引脚与数字或模拟备用功能共用。 由于它们在AHB2总线上的映射,可以实现快速I / O切换。 如果需要,可以锁定I / O备用功能配置序列,以避免虚假写入I / O寄存器。

经过上一段对GPIO口模式的说明,在这里对它的工作模式进行一个小结,它一共有八种组合,即有八种可配置的工作模式,分别是:

  1. 输入浮空
  2. 输入上拉
  3. 输入下拉
  4. 模拟
  5. 带上拉或下拉的开漏输出
  6. 带上拉或下拉的推挽输出
  7. 带上拉或下拉的复用功能推挽
  8. 带上拉或下拉的复用功能开漏

3.2 硬件设计

选择STM32L4引脚PC7作为马达的控制引脚,PC7高电平时马达起振。

3.3 实验准备

  1. 使用miniUSB线及10pin排线,通过Jlink仿真器连接PC端和开发板。
  2. 使用Keil打开基础实验 02-马达实验工程。
  3. 下载程序,并完成功能测试。

3.4 实验验证

下载完成后,按下开发板上按键S1,马达起振,按下S3,马达停止。

3.5 源码详解

本节中的源码说明,仅针对此例程中的重要功能,详细的源码介绍请大家参照代码后的注释。

3.5.1 stm32l4xx_hal_conf.h

此文件位于“02-马达实验\Inc”路径中,主要用途是选择使能此例程使用到的库文件,一般情况下,我们默认需要使用的为前5个,包含芯片、flash、电源、时钟以及NVIC。

此例程因为我们需要展示IO的使用,所以我们额外使能 HAL_GPIO_MODULE_ENABLED。

103 // 使能的宏
104 #define HAL_MODULE_ENABLED          // 芯片
105 #define HAL_FLASH_MODULE_ENABLED    // Flash
106 #define HAL_PWR_MODULE_ENABLED      // 电源
107 #define HAL_RCC_MODULE_ENABLED      // 时钟
108 #define HAL_CORTEX_MODULE_ENABLED   // NVIC
109 
110 #define HAL_GPIO_MODULE_ENABLED     // GPIO

3.5.2 main.c

main函数,我们的例程由此处开始执行,首先调用HAL_Init()函数初始化我们的模块,接着调用SystemClock_Config()函数初始化此例程用到的时钟,具体有哪些时钟被初始化,在gyu_util.c部分有详细说明。

接下来是初始化按键,有关按键的部分会在04-按键实验中给大家讲解。

这边我们主要关注的是马达的初始化,其实是和LED实验一样的,就是初始化一下马达控制IO。

36 int main(void)
37 {
38   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
39 	// 重置所有外设、flash界面以及系统时钟
40   HAL_Init();
41 
42 	// 配置系统时钟(包含振荡器、系统时钟、总线时钟等等)
43   SystemClock_Config();
44   
45   // 初始化按键引脚
46 	MX_KEY_Init();
47   
48   //注册按钮回调函数
49   KEY_RegisterCb(AppKey_cb);
50   
51 	// 初始化马达
52 	Motor_Init();
53   
54   // 
55   while (1)
56   {
57 		KEY_Poll();   // 按键轮训,监测是否有按键被按下
58   }
59 }

在按键的处理回调函数中,我们可以看到,按键S1(UP)按下后,设置马达引脚高电平,按键S3(DOWN)按下后,设置马达引脚低电平

69 void AppKey_cb(uint8_t key)
70 {
71   // 如果有相应按键被按下,则串口打印调试信息
72   if(key & KEY_UP)
73   {
74     Motor_SET(GPIO_PIN_SET);
75   }
76   if(key & KEY_LEFT)
77   {
78     //
79   }
80   if(key & KEY_DOWN)
81   {
82     Motor_SET(GPIO_PIN_RESET);
83   }
84   if(key & KEY_RIGHT)
85   {
86     //
87   }
88 }

3.5.3 gyu_util.c

时钟初始化函数,用于配置我们模块运行的系统时钟、AHB高性能总线时钟、APB外设总线时钟以及单个外设的时钟。

主要包含了三个部分的初始化配置。

1.内部或者外部振荡器选择,也就是选择时钟信号的来源,是内部振荡,还是外部晶振。

2.时钟配置,选择系统、AHB总线及APB总线的时钟来源。

3.外设时钟配置,选择外设时钟来源。

为了给大家比较全面的展示各个时钟,我们振荡器选择HSI(内部16MHz高频)、HSE(外部8MHz高频)以及LSE(外部32.768KHz低频)三个。选择HSE作为PLL(锁相回路)时钟源,配置PLLCLK为80MHz。配置系统时钟SYSCLK、AHB高性能总线、APB外设总线(APB1及APB2)为80MHz。另外我们还分别配置了ADC、UART以及I2C的外设时钟。

基础实验中的其他例程,大部分都是使用的相同的时钟配置函数,有特殊的时钟使用,将会在对应例程的源码详解中做针对性说明。

 49 void SystemClock_Config(void)
 50 {
 51   RCC_OscInitTypeDef RCC_OscInitStruct;     // 定义RCC内部/外部振荡器结构体
 52   RCC_ClkInitTypeDef RCC_ClkInitStruct;     // 定义RCC系统,AHB和APB总线时钟配置结构体
 53   RCC_PeriphCLKInitTypeDef PeriphClkInit;   // 定义RCC扩展时钟结构体
 54   
 55   // 配置LSE驱动器功能为低驱动能力
 56   __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
 57 
 58   // 初始化CPU,AHB和APB总线时钟
 59   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE
 60                               |RCC_OSCILLATORTYPE_LSE;        // 设置需要配置的振荡器为HSI、HSE、LSE
 61   // 配置HSE
 62   RCC_OscInitStruct.HSEState = RCC_HSE_ON;                    // 激活HSE时钟(开发板外部为8MHz)
 63   // 配置LSE
 64   RCC_OscInitStruct.LSEState = RCC_LSE_ON;                    // 激活LSE时钟(32.768KHz,低驱动)
 65   // 配置HSI
 66   RCC_OscInitStruct.HSIState = RCC_HSI_ON;                    // 激活HSI时钟
 67   RCC_OscInitStruct.HSICalibrationValue = 16;                 // 配置HSI为16MHz     
 68   // 配置PLL
 69   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;                // 打开PLL
 70   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;        // 选择HSE时钟作为PLL入口时钟源,8MHz
 71   RCC_OscInitStruct.PLL.PLLM = 1;                             // 配置PLL VCO输入分频为1,8/1 = 8MHz
 72   RCC_OscInitStruct.PLL.PLLN = 20;                            // 配置PLL VCO输入倍增为20,8MHz*20 = 160MHz
 73   RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;                 // SAI时钟7分频,160/7 = 22.857143MHz
 74   RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;                 // SDMMC、RNG、USB时钟2分频,160/2 = 80MHz
 75   RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;                 // 系统主时钟分区2分频,160/2 = 80MHz
 76   // RCC时钟配置,出错则进入错误处理函数
 77   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 78   {
 79     _Error_Handler(__FILE__, __LINE__);
 80   }
 81   
 82   // 初始化CPU,AHB和APB总线时钟
 83   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
 84                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; // 需要配置的时钟HCLK、SYSCLK、PCLK1、PCLK2
 85   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;             // 配置系统时钟为PLLCLK输入,80MHz
 86   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;                    // AHB时钟为系统时钟1分频,80/1 = 80MHz
 87   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;                     // APB1时钟为系统时钟1分频,80/1 = 80MHz
 88   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;                     // APB2时钟为系统时钟1分频,80/1 = 80MHz
 89   // RCC时钟配置,出错则进入错误处理函数
 90   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) // HCLK=80MHz,Vcore=3.3V,所以选择SW4(FLASH_LATENCY_4)
 91    {
 92     _Error_Handler(__FILE__, __LINE__);
 93   }
 94 
 95   // 初始化外设时钟
 96   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART2
 97                               |RCC_PERIPHCLK_LPUART1|RCC_PERIPHCLK_LPTIM1
 98                               |RCC_PERIPHCLK_I2C2|RCC_PERIPHCLK_ADC;  // 需要初始化的外设时钟:USART1、USART2、LPUART1、LPTIM1、I2C2、ADC
 99   PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;     // 配置串口USART1时钟为PCLK2,80MHz
100   PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;     // 配置串口USART2时钟为PCLK1,80MHz
101   PeriphClkInit.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_HSI;     // 配置LPUART时钟为HSI,16MHz
102   PeriphClkInit.I2c2ClockSelection = RCC_I2C2CLKSOURCE_PCLK1;         // 配置I2C2时钟为PCLK1,80MHz
103   PeriphClkInit.Lptim1ClockSelection = RCC_LPTIM1CLKSOURCE_LSE;       // 配置LPTIM1时钟为LSE,32.768KHz
104   PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;         // 配置ADC时钟为PLLSAI1,现在为80MHz,下面会重新定义
105   PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_HSE;            // 配置PLLSAI1时钟为HSE,8MHz
106   PeriphClkInit.PLLSAI1.PLLSAI1M = 1;                                 // 配置PLLSAI1分频为1
107   PeriphClkInit.PLLSAI1.PLLSAI1N = 8;                                 // 配置PLLSAI1倍增为8
108   PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7;                     // SAI时钟7分频,64/7 = 9.142857MHz
109   PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2;                     // SDMMC、RNG、USB时钟2分频,64/2 = 32MHz
110   PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2;                     // 系统主时钟分区2分频,64/2 = 32MHz             
111   PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK;        // 配置PLLSAI1输出为ADC1时钟,也就是配置ADC1时钟,32MHz
112   // 外设时钟配置,出错则进入错误处理函数
113   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
114   {
115     _Error_Handler(__FILE__, __LINE__);
116   }
117 
118   // 配置内部主稳压器输出电压,配置为稳压器输出电压范围1模式,也就是:典型输出电压为1.2V,系统频率高达80MHz
119   if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
120   {
121     _Error_Handler(__FILE__, __LINE__);
122   }
123 
124   // 配置系统定时器中断时间,配置为HCLK的千分频
125   HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
126 
127   // 配置系统定时器,配置为HCLK
128   HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
129 
130   // 系统定时器中断配置,设置系统定时器中断优先级最高(为0),且子优先级最高(为0)
131   HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
132 }

3.5.4 gyu_motor.c

马达引脚初始化函数,初始化PC7推挽输出低电平。

31 void Motor_Init(void)
32 {
33 	GPIO_InitTypeDef  GPIO_InitStructure;               // 定义引脚参数结构体
34 
35 	__HAL_RCC_GPIOC_CLK_ENABLE();                       // 使能GPIOC时钟
36 
37 	GPIO_InitStructure.Pin= GPIO_PIN_7;                 // 引脚编号为7
38 	GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;      // 推挽输出
39 	GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_LOW;     // 低频率
40 	GPIO_InitStructure.Pull = GPIO_PULLUP;              // 上拉
41 	HAL_GPIO_Init(GPIOC, &GPIO_InitStructure);          // 初始化PC7
42 	
43 	HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);    // 设置PC7默认输出低电平
44 }

马达引脚电平设置函数,设置为高电平,马达起振,设置低电平,马达停止。

54 void Motor_SET(GPIO_PinState pinSate)
55 {   
56 	HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, pinSate);   // 设置PC7输出
57 }

4 03-蜂鸣器实验

蜂鸣器实验通过控制 GPIO 引脚输出高低电平,用于控制蜂鸣器发出蜂鸣声或者停止发声 。

4.1 STM32L476 IO简介

每个GPIO引脚都可以通过软件配置为输出(推挽或漏极开路),输入(带或不带上拉或下拉)或外设备用功能。 大多数GPIO引脚与数字或模拟备用功能共用。 由于它们在AHB2总线上的映射,可以实现快速I / O切换。 如果需要,可以锁定I / O备用功能配置序列,以避免虚假写入I / O寄存器。

经过上一段对GPIO口模式的说明,在这里对它的工作模式进行一个小结,它一共有八种组合,即有八种可配置的工作模式,分别是:

  1. 输入浮空
  2. 输入上拉
  3. 输入下拉
  4. 模拟
  5. 带上拉或下拉的开漏输出
  6. 带上拉或下拉的推挽输出
  7. 带上拉或下拉的复用功能推挽
  8. 带上拉或下拉的复用功能开漏

4.2 硬件设计

选择STM32L4引脚PB2作为蜂鸣器的控制引脚,PB2高电平时蜂鸣器发出蜂鸣声。

4.3 实验准备

  1. 使用miniUSB线及10pin排线,通过Jlink仿真器连接PC端和开发板。
  2. 使用Keil打开基础实验 03-蜂鸣器实验工程。
  3. 下载程序,并完成功能测试。

4.4 实验验证

下载完成后,按下开发板上按键S1,蜂鸣器发声,按下S3,蜂鸣器停止。

4.5 源码详解

本节中的源码说明,仅针对此例程中的重要功能,详细的源码介绍请大家参照代码后的注释。

4.5.1 stm32l4xx_hal_conf.h

此文件位于“03-蜂鸣器实验\Inc”路径中,主要用途是选择使能此例程使用到的库文件,一般情况下,我们默认需要使用的为前5个,包含芯片、flash、电源、时钟以及NVIC。

此例程因为我们需要展示IO的使用,所以我们额外使能 HAL_GPIO_MODULE_ENABLED。

103 // 使能的宏
104 #define HAL_MODULE_ENABLED          // 芯片
105 #define HAL_FLASH_MODULE_ENABLED    // Flash
106 #define HAL_PWR_MODULE_ENABLED      // 电源
107 #define HAL_RCC_MODULE_ENABLED      // 时钟
108 #define HAL_CORTEX_MODULE_ENABLED   // NVIC
109 
110 #define HAL_GPIO_MODULE_ENABLED     // GPIO

4.5.2 main.c

main函数,我们的例程由此处开始执行,首先调用HAL_Init()函数初始化我们的模块,接着调用SystemClock_Config()函数初始化此例程用到的时钟,具体有哪些时钟被初始化,在gyu_util.c部分有详细说明。

接下来是初始化按键,有关按键的部分会在04-按键实验中给大家讲解。

最后我们初始化蜂鸣器引脚,配置蜂鸣器引脚为默认输出低电平。

36 int main(void)
37 {
38   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
39 	// 重置所有外设、flash界面以及系统时钟
40   HAL_Init();
41 
42 	// 配置系统时钟(包含振荡器、系统时钟、总线时钟等等)
43   SystemClock_Config();
44   
45   // 初始化按键引脚
46   MX_KEY_Init();
47   
48   //注册按钮回调函数
49   KEY_RegisterCb(AppKey_cb);
50   
51   //初始化蜂鸣器
52   Buzzer_Init();
53   
54   // 
55   while (1)
56   {
57 		KEY_Poll();   // 按键轮训,监测是否有按键被按下
58   }
59 }

在按键的处理回调函数中,我们可以看到,按键S1(UP)按下后,设置蜂鸣器引脚高电平,按键S3(DOWN)按下后,设置蜂鸣器引脚低电平

69 void AppKey_cb(uint8_t key)
70 {
71   // 如果有相应按键被按下,则串口打印调试信息
72   if(key & KEY_UP)
73   {
74     Motor_SET(GPIO_PIN_SET);
75   }
76   if(key & KEY_LEFT)
77   {
78     //
79   }
80   if(key & KEY_DOWN)
81   {
82     Motor_SET(GPIO_PIN_RESET);
83   }
84   if(key & KEY_RIGHT)
85   {
86     //
87   }
88 }

4.5.3 gyu_util.c

时钟初始化函数,用于配置我们模块运行的系统时钟、AHB高性能总线时钟、APB外设总线时钟以及单个外设的时钟。

主要包含了三个部分的初始化配置。

1.内部或者外部振荡器选择,也就是选择时钟信号的来源,是内部振荡,还是外部晶振。

2.时钟配置,选择系统、AHB总线及APB总线的时钟来源。

3.外设时钟配置,选择外设时钟来源。

为了给大家比较全面的展示各个时钟,我们振荡器选择HSI(内部16MHz高频)、HSE(外部8MHz高频)以及LSE(外部32.768KHz低频)三个。选择HSE作为PLL(锁相回路)时钟源,配置PLLCLK为80MHz。配置系统时钟SYSCLK、AHB高性能总线、APB外设总线(APB1及APB2)为80MHz。另外我们还分别配置了ADC、UART以及I2C的外设时钟。

基础实验中的其他例程,大部分都是使用的相同的时钟配置函数,有特殊的时钟使用,将会在对应例程的源码详解中做针对性说明。

 49 void SystemClock_Config(void)
 50 {
 51   RCC_OscInitTypeDef RCC_OscInitStruct;     // 定义RCC内部/外部振荡器结构体
 52   RCC_ClkInitTypeDef RCC_ClkInitStruct;     // 定义RCC系统,AHB和APB总线时钟配置结构体
 53   RCC_PeriphCLKInitTypeDef PeriphClkInit;   // 定义RCC扩展时钟结构体
 54   
 55   // 配置LSE驱动器功能为低驱动能力
 56   __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
 57 
 58   // 初始化CPU,AHB和APB总线时钟
 59   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE
 60                               |RCC_OSCILLATORTYPE_LSE;        // 设置需要配置的振荡器为HSI、HSE、LSE
 61   // 配置HSE
 62   RCC_OscInitStruct.HSEState = RCC_HSE_ON;                    // 激活HSE时钟(开发板外部为8MHz)
 63   // 配置LSE
 64   RCC_OscInitStruct.LSEState = RCC_LSE_ON;                    // 激活LSE时钟(32.768KHz,低驱动)
 65   // 配置HSI
 66   RCC_OscInitStruct.HSIState = RCC_HSI_ON;                    // 激活HSI时钟
 67   RCC_OscInitStruct.HSICalibrationValue = 16;                 // 配置HSI为16MHz     
 68   // 配置PLL
 69   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;                // 打开PLL
 70   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;        // 选择HSE时钟作为PLL入口时钟源,8MHz
 71   RCC_OscInitStruct.PLL.PLLM = 1;                             // 配置PLL VCO输入分频为1,8/1 = 8MHz
 72   RCC_OscInitStruct.PLL.PLLN = 20;                            // 配置PLL VCO输入倍增为20,8MHz*20 = 160MHz
 73   RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;                 // SAI时钟7分频,160/7 = 22.857143MHz
 74   RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;                 // SDMMC、RNG、USB时钟2分频,160/2 = 80MHz
 75   RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;                 // 系统主时钟分区2分频,160/2 = 80MHz
 76   // RCC时钟配置,出错则进入错误处理函数
 77   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 78   {
 79     _Error_Handler(__FILE__, __LINE__);
 80   }
 81   
 82   // 初始化CPU,AHB和APB总线时钟
 83   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
 84                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; // 需要配置的时钟HCLK、SYSCLK、PCLK1、PCLK2
 85   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;             // 配置系统时钟为PLLCLK输入,80MHz
 86   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;                    // AHB时钟为系统时钟1分频,80/1 = 80MHz
 87   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;                     // APB1时钟为系统时钟1分频,80/1 = 80MHz
 88   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;                     // APB2时钟为系统时钟1分频,80/1 = 80MHz
 89   // RCC时钟配置,出错则进入错误处理函数
 90   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) // HCLK=80MHz,Vcore=3.3V,所以选择SW4(FLASH_LATENCY_4)
 91    {
 92     _Error_Handler(__FILE__, __LINE__);
 93   }
 94 
 95   // 初始化外设时钟
 96   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART2
 97                               |RCC_PERIPHCLK_LPUART1|RCC_PERIPHCLK_LPTIM1
 98                               |RCC_PERIPHCLK_I2C2|RCC_PERIPHCLK_ADC;  // 需要初始化的外设时钟:USART1、USART2、LPUART1、LPTIM1、I2C2、ADC
 99   PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;     // 配置串口USART1时钟为PCLK2,80MHz
100   PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;     // 配置串口USART2时钟为PCLK1,80MHz
101   PeriphClkInit.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_HSI;     // 配置LPUART时钟为HSI,16MHz
102   PeriphClkInit.I2c2ClockSelection = RCC_I2C2CLKSOURCE_PCLK1;         // 配置I2C2时钟为PCLK1,80MHz
103   PeriphClkInit.Lptim1ClockSelection = RCC_LPTIM1CLKSOURCE_LSE;       // 配置LPTIM1时钟为LSE,32.768KHz
104   PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;         // 配置ADC时钟为PLLSAI1,现在为80MHz,下面会重新定义
105   PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_HSE;            // 配置PLLSAI1时钟为HSE,8MHz
106   PeriphClkInit.PLLSAI1.PLLSAI1M = 1;                                 // 配置PLLSAI1分频为1
107   PeriphClkInit.PLLSAI1.PLLSAI1N = 8;                                 // 配置PLLSAI1倍增为8
108   PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7;                     // SAI时钟7分频,64/7 = 9.142857MHz
109   PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2;                     // SDMMC、RNG、USB时钟2分频,64/2 = 32MHz
110   PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2;                     // 系统主时钟分区2分频,64/2 = 32MHz             
111   PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK;        // 配置PLLSAI1输出为ADC1时钟,也就是配置ADC1时钟,32MHz
112   // 外设时钟配置,出错则进入错误处理函数
113   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
114   {
115     _Error_Handler(__FILE__, __LINE__);
116   }
117 
118   // 配置内部主稳压器输出电压,配置为稳压器输出电压范围1模式,也就是:典型输出电压为1.2V,系统频率高达80MHz
119   if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
120   {
121     _Error_Handler(__FILE__, __LINE__);
122   }
123 
124   // 配置系统定时器中断时间,配置为HCLK的千分频
125   HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
126 
127   // 配置系统定时器,配置为HCLK
128   HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
129 
130   // 系统定时器中断配置,设置系统定时器中断优先级最高(为0),且子优先级最高(为0)
131   HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
132 }

4.5.4 gyu_buzzer.c

蜂鸣器引脚初始化函数,初始化PB2推挽输出低电平。

31 void Buzzer_Init(void)
32 {
33 	GPIO_InitTypeDef  GPIO_InitStructure;               // 定义引脚参数结构体
34 
35 	__HAL_RCC_GPIOB_CLK_ENABLE();                       // 使能GPIOB时钟
36 
37 	GPIO_InitStructure.Pin= GPIO_PIN_2;                 // 引脚编号为2
38 	GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;      // 推挽输出
39 	GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_LOW;     // 低频率
40 	GPIO_InitStructure.Pull = GPIO_PULLUP;              // 上拉
41 	HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);          // 初始化PB2
42 	
43 	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_RESET);    // 设置PB2默认输出低电平
44 }

蜂鸣器引脚电平设置函数,设置为高电平,蜂鸣器发出蜂鸣声,设置低电平,蜂鸣器停止。

54 void Buzzer_SET(GPIO_PinState pinSate)
55 {   
56 	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, pinSate);   // 设置PB2输出
57 }

5 04-按键中断实验

按键中断实验,是通过外部引脚中断来判断是否有按键被按下,按键部分的代码这个在马达以及蜂鸣器实验中其实已经展示过了,这边给大家做一个详细的讲解。我们分别选择PC0、PC1、PC2、PC3这4个引脚作为我们的按键引脚,对应EXTI line0、EXTI line1、EXTI line2、EXTI line3。

5.1 STM32L476 外部中断简介

首先我们看一下外部中断/事件的GPIO映射图。

由上面的映射图可以知道,多个GPIO引脚(GPIOA、GPIOB、GPIOC、GPIOD等等的GPIO_Pin_0)都会触发同一个中断线(EXTI line0)。也就是说,当EXTI0被触发时,我们无法判断他是PA0触发,还是PB0触发,因此大家在设计自己的硬件的时候,需要选择合适的中断引脚。

源码中我们配置外部中断的步骤如下:

1.使能GPIO时钟

2.GPIO初始化,配置GPIO的边沿触发条件

3.设置EXTI线,配置GPIO与EXTI的关系

4.中断向量初始化

5.2 硬件设计

选择STM32L4引脚PC0、PC1、PC2、PC3作为按键的控制引脚。

5.3 实验准备

  1. 使用miniUSB线及10pin排线,通过Jlink仿真器连接PC端和开发板。
  2. 将SW1拨到DBG端,SW2拨到MCU。
  3. 使用Keil打开基础实验 04-按键中断实验工程。
  4. 使用Xshell打开Jlink虚拟出的COM口
  5. 下载程序,并完成功能测试。

5.4 实验验证

下载完成后,分别按下开发板上的S1、S2、S3、S4按键,可以看到Xshell中Jlink虚拟的COM口分别打印如下:

5.5 源码详解

本节中的源码说明,仅针对此例程中的重要功能,详细的源码介绍请大家参照代码后的注释。

5.5.1 stm32l4xx_hal_conf.h

此文件位于“04-按键中断实验\Inc”路径中,主要用途是选择使能此例程使用到的库文件,一般情况下,我们默认需要使用的为前5个,包含芯片、flash、电源、时钟以及NVIC。

此例程我们只要展示的是外部GPIO中断,所以我们额外使能 HAL_GPIO_MODULE_ENABLED。另外为了辅助展示按键信息,我们额外添加了串口相关的DMA、UART这两个宏定义。

103 // 使能的宏
104 #define HAL_MODULE_ENABLED          // 芯片
105 #define HAL_FLASH_MODULE_ENABLED    // Flash
106 #define HAL_PWR_MODULE_ENABLED      // 电源
107 #define HAL_RCC_MODULE_ENABLED      // 时钟
108 #define HAL_CORTEX_MODULE_ENABLED   // NVIC
109 
110 #define HAL_GPIO_MODULE_ENABLED     // GPIO
111 #define HAL_DMA_MODULE_ENABLED      // DMA
112 #define HAL_UART_MODULE_ENABLED     // UART

5.5.2 main.c

main函数,我们的例程由此处开始执行,首先调用HAL_Init()函数初始化我们的模块,接着调用SystemClock_Config()函数初始化此例程用到的时钟,具体有哪些时钟被初始化,在gyu_util.c部分有详细说明。

接下来我们初始化了串口部分,目的是打印按键按下的调试信息。

接下来是初始化按键,并且注册了按键回调函数(回调函数负责的是不同层之间的数据传输)。

在最后的while()循环中,我们调用按键轮训函数,这样一旦有外部中断触发,我们首先会进行一下按键消抖,确认是否为误判。如果判断是正常触发,则认为是有按键按下,此时按键处理文件gyu_key.c中会将按键信息,通过上面说的回调函数,传到应用层(mian.c)中进行处理。

36 int main(void)
37 {
38   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
39 	// 重置所有外设、flash界面以及系统时钟
40   HAL_Init();
41 
42 	// 配置系统时钟(包含振荡器、系统时钟、总线时钟等等)
43   SystemClock_Config();
44 	
45 	// 初始化USART1
46 	MX_USART1_UART_Init();
47   
48   // 初始化按键引脚
49 	MX_KEY_Init();
50   
51   //注册按钮回调函数
52   KEY_RegisterCb(AppKey_cb);
53   
54   // 
55   while (1)
56   {
57 		KEY_Poll();   // 按键轮训,监测是否有按键被按下
58   }
59 }

在应用层的按键回调函数中,我们可以看到,当我们分别按下S1、S2、S3、S4按键后,STM32L4会通过串口向外部打印按键信息。

69 void AppKey_cb(uint8_t key)
70 {
71   // 如果有相应按键被按下,则串口打印调试信息
72   if(key & KEY_UP)
73   {
74     printf("key_up press\r\n");
75   }
76   if(key & KEY_LEFT)
77   {
78     printf("key_left press\r\n");
79   }
80   if(key & KEY_DOWN)
81   {
82     printf("key_down press\r\n");
83   }
84   if(key & KEY_RIGHT)
85   {
86     printf("key_right press\r\n");
87   }
88 }

5.5.3 gyu_util.c

时钟初始化函数,用于配置我们模块运行的系统时钟、AHB高性能总线时钟、APB外设总线时钟以及单个外设的时钟。

主要包含了三个部分的初始化配置。

1.内部或者外部振荡器选择,也就是选择时钟信号的来源,是内部振荡,还是外部晶振。

2.时钟配置,选择系统、AHB总线及APB总线的时钟来源。

3.外设时钟配置,选择外设时钟来源。

为了给大家比较全面的展示各个时钟,我们振荡器选择HSI(内部16MHz高频)、HSE(外部8MHz高频)以及LSE(外部32.768KHz低频)三个。选择HSE作为PLL(锁相回路)时钟源,配置PLLCLK为80MHz。配置系统时钟SYSCLK、AHB高性能总线、APB外设总线(APB1及APB2)为80MHz。另外我们还分别配置了ADC、UART以及I2C的外设时钟。

基础实验中的其他例程,大部分都是使用的相同的时钟配置函数,有特殊的时钟使用,将会在对应例程的源码详解中做针对性说明。

 49 void SystemClock_Config(void)
 50 {
 51   RCC_OscInitTypeDef RCC_OscInitStruct;     // 定义RCC内部/外部振荡器结构体
 52   RCC_ClkInitTypeDef RCC_ClkInitStruct;     // 定义RCC系统,AHB和APB总线时钟配置结构体
 53   RCC_PeriphCLKInitTypeDef PeriphClkInit;   // 定义RCC扩展时钟结构体
 54   
 55   // 配置LSE驱动器功能为低驱动能力
 56   __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
 57 
 58   // 初始化CPU,AHB和APB总线时钟
 59   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE
 60                               |RCC_OSCILLATORTYPE_LSE;        // 设置需要配置的振荡器为HSI、HSE、LSE
 61   // 配置HSE
 62   RCC_OscInitStruct.HSEState = RCC_HSE_ON;                    // 激活HSE时钟(开发板外部为8MHz)
 63   // 配置LSE
 64   RCC_OscInitStruct.LSEState = RCC_LSE_ON;                    // 激活LSE时钟(32.768KHz,低驱动)
 65   // 配置HSI
 66   RCC_OscInitStruct.HSIState = RCC_HSI_ON;                    // 激活HSI时钟
 67   RCC_OscInitStruct.HSICalibrationValue = 16;                 // 配置HSI为16MHz     
 68   // 配置PLL
 69   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;                // 打开PLL
 70   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;        // 选择HSE时钟作为PLL入口时钟源,8MHz
 71   RCC_OscInitStruct.PLL.PLLM = 1;                             // 配置PLL VCO输入分频为1,8/1 = 8MHz
 72   RCC_OscInitStruct.PLL.PLLN = 20;                            // 配置PLL VCO输入倍增为20,8MHz*20 = 160MHz
 73   RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;                 // SAI时钟7分频,160/7 = 22.857143MHz
 74   RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;                 // SDMMC、RNG、USB时钟2分频,160/2 = 80MHz
 75   RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;                 // 系统主时钟分区2分频,160/2 = 80MHz
 76   // RCC时钟配置,出错则进入错误处理函数
 77   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 78   {
 79     _Error_Handler(__FILE__, __LINE__);
 80   }
 81   
 82   // 初始化CPU,AHB和APB总线时钟
 83   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
 84                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; // 需要配置的时钟HCLK、SYSCLK、PCLK1、PCLK2
 85   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;             // 配置系统时钟为PLLCLK输入,80MHz
 86   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;                    // AHB时钟为系统时钟1分频,80/1 = 80MHz
 87   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;                     // APB1时钟为系统时钟1分频,80/1 = 80MHz
 88   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;                     // APB2时钟为系统时钟1分频,80/1 = 80MHz
 89   // RCC时钟配置,出错则进入错误处理函数
 90   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) // HCLK=80MHz,Vcore=3.3V,所以选择SW4(FLASH_LATENCY_4)
 91    {
 92     _Error_Handler(__FILE__, __LINE__);
 93   }
 94 
 95   // 初始化外设时钟
 96   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART2
 97                               |RCC_PERIPHCLK_LPUART1|RCC_PERIPHCLK_LPTIM1
 98                               |RCC_PERIPHCLK_I2C2|RCC_PERIPHCLK_ADC;  // 需要初始化的外设时钟:USART1、USART2、LPUART1、LPTIM1、I2C2、ADC
 99   PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;     // 配置串口USART1时钟为PCLK2,80MHz
100   PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;     // 配置串口USART2时钟为PCLK1,80MHz
101   PeriphClkInit.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_HSI;     // 配置LPUART时钟为HSI,16MHz
102   PeriphClkInit.I2c2ClockSelection = RCC_I2C2CLKSOURCE_PCLK1;         // 配置I2C2时钟为PCLK1,80MHz
103   PeriphClkInit.Lptim1ClockSelection = RCC_LPTIM1CLKSOURCE_LSE;       // 配置LPTIM1时钟为LSE,32.768KHz
104   PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;         // 配置ADC时钟为PLLSAI1,现在为80MHz,下面会重新定义
105   PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_HSE;            // 配置PLLSAI1时钟为HSE,8MHz
106   PeriphClkInit.PLLSAI1.PLLSAI1M = 1;                                 // 配置PLLSAI1分频为1
107   PeriphClkInit.PLLSAI1.PLLSAI1N = 8;                                 // 配置PLLSAI1倍增为8
108   PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7;                     // SAI时钟7分频,64/7 = 9.142857MHz
109   PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2;                     // SDMMC、RNG、USB时钟2分频,64/2 = 32MHz
110   PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2;                     // 系统主时钟分区2分频,64/2 = 32MHz             
111   PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK;        // 配置PLLSAI1输出为ADC1时钟,也就是配置ADC1时钟,32MHz
112   // 外设时钟配置,出错则进入错误处理函数
113   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
114   {
115     _Error_Handler(__FILE__, __LINE__);
116   }
117 
118   // 配置内部主稳压器输出电压,配置为稳压器输出电压范围1模式,也就是:典型输出电压为1.2V,系统频率高达80MHz
119   if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
120   {
121     _Error_Handler(__FILE__, __LINE__);
122   }
123 
124   // 配置系统定时器中断时间,配置为HCLK的千分频
125   HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
126 
127   // 配置系统定时器,配置为HCLK
128   HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
129 
130   // 系统定时器中断配置,设置系统定时器中断优先级最高(为0),且子优先级最高(为0)
131   HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
132 }

5.5.4 gyu_key.c

首先我们看一下按键的初始化函数,在按键初始化函数中我们配置按键引脚的状态,四个按键引脚都被配置为默认上拉,下降沿中断触发。并且开启EXTI0、EXTI1、EXTI2、EXTI3这四个外部中断线。

 75 void MX_KEY_Init(void)
 76 {
 77   // 定义GPIO结构体
 78   GPIO_InitTypeDef GPIO_InitStruct;
 79 
 80   // 使能GPIOC引脚时钟(按键引脚:PC0、PC1、PC2、PC3)
 81   __HAL_RCC_GPIOC_CLK_ENABLE();
 82 
 83   // 配置按键引脚
 84   GPIO_InitStruct.Pin = KEY_LEFT_Pin|KEY_DOWN_Pin|KEY_RIGHT_Pin|KEY_UP_Pin; // 选择PC0、PC1、PC2、PC3
 85   GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;    // 下降沿中断触发
 86   GPIO_InitStruct.Pull = GPIO_PULLUP;             // 上拉
 87   HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);         // 初始化引脚
 88   
 89   // 配置中断优先级,并且使能中断
 90   {
 91   // 配置PC0的中断,也就是EXTI line0
 92   HAL_NVIC_SetPriority(KEY_LEFT_EXTI_IRQn, 10, 0);
 93   HAL_NVIC_EnableIRQ(KEY_LEFT_EXTI_IRQn);
 94   
 95   // 配置PC1的中断,也就是EXTI line1    
 96   HAL_NVIC_SetPriority(KEY_DOWN_EXTI_IRQn, 10, 0);
 97   HAL_NVIC_EnableIRQ(KEY_DOWN_EXTI_IRQn);
 98   
 99   // 配置PC2的中断,也就是EXTI line2  
100   HAL_NVIC_SetPriority(KEY_RIGHT_EXTI_IRQn, 10, 0);
101   HAL_NVIC_EnableIRQ(KEY_RIGHT_EXTI_IRQn);
102   
103   // 配置PC3的中断,也就是EXTI line3
104   HAL_NVIC_SetPriority(KEY_UP_EXTI_IRQn, 10, 0);
105   HAL_NVIC_EnableIRQ(KEY_UP_EXTI_IRQn);
106   }
107 }

如下,是我们在初始化函数中打开的四个中断线。

43 // EXTI line0 中断函数
44 void EXTI0_IRQHandler(void)
45 {
46   HAL_GPIO_EXTI_IRQHandler(KEY_LEFT_Pin);
47 }
48 
49 // EXTI line1 中断函数
50 void EXTI1_IRQHandler(void)
51 {
52   HAL_GPIO_EXTI_IRQHandler(KEY_DOWN_Pin);
53 }
54 
55 // EXTI line2 中断函数
56 void EXTI2_IRQHandler(void)
57 {
58   HAL_GPIO_EXTI_IRQHandler(KEY_RIGHT_Pin);
59 }
60 
61 // EXTI line3 中断函数
62 void EXTI3_IRQHandler(void)
63 {
64   HAL_GPIO_EXTI_IRQHandler(KEY_UP_Pin);
65 }

我们配置好上面所说的引脚外部中断后,一旦有按键被按下,则会触发中断,最终会跑到如下的HAL_GPIO_EXTI_Callback()函数中。我们在这个函数中,判断一下是哪一个中断线触发的中断,并且记录一下按键信息,以及触发的时间(记录触发的时间,是为了进行按键消抖,防止误操作)。

119 void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
120 {
121   // 如果是UP键被触发,记录按键任务为KEY_UP,并记录当前时钟
122   if(GPIO_Pin == KEY_UP_Pin)
123   {
124     key_check_press.key_event = KEY_UP;
125     key_check_press.start_tick = HAL_GetTick();
126   }
127   // 如果是LEFT键被触发,记录按键任务为KEY_LEFT,并记录当前时钟
128   if(GPIO_Pin == KEY_LEFT_Pin)
129   {
130     key_check_press.key_event = KEY_LEFT;
131     key_check_press.start_tick = HAL_GetTick();
132   }
133   // 如果是DOWN键被触发,记录按键任务为KEY_DOWN,并记录当前时钟
134   if(GPIO_Pin == KEY_DOWN_Pin)
135   {
136     key_check_press.key_event = KEY_DOWN;
137     key_check_press.start_tick = HAL_GetTick();
138   }
139   // 如果是RIGHT键被触发,记录按键任务为KEY_RIGHT,并记录当前时钟
140   if(GPIO_Pin == KEY_RIGHT_Pin)
141   {
142     key_check_press.key_event = KEY_RIGHT;
143     key_check_press.start_tick = HAL_GetTick();
144   }
145 }

按键轮训函数,其实就是用来处理消抖的函数,我们根据从外部中断回调函数中的获取的时间(也就是中断触发的时间,上一个函数中记录的),对比现在实时的时间,判断是否超过20ms,如果超过20ms,则认为按键被按下。我们记录下按键信息,并且执行向应用层回调的函数。

171 void KEY_Poll(void)
172 {
173   uint8_t key_event = 0;
174   
175   // 如果有按键任务
176   if(key_check_press.key_event)
177   {
178     // 获取当前时钟 减去 记录的按键触发时钟,如果大于消抖延时,则继续向下判断
179     if(HAL_GetTick() - key_check_press.start_tick >= KEY_DELAY_TICK )
180     {
181       // 如果按键任务记录为KEY_UP
182       if(key_check_press.key_event & KEY_UP)
183       {
184         // 获取当前KEY_UP引脚电平,如果是低电平,则认为UP按键被按下
185         if(HAL_GPIO_ReadPin(KEY_UP_GPIO_Port,KEY_UP_Pin) == GPIO_PIN_RESET)
186         {
187           key_event |= KEY_UP;  // 记录app按键任务
188         }
189         key_check_press.key_event ^= KEY_UP;  // 删除按键中断任务
190       }
191       
192       // 如果按键任务记录为KEY_LEFT
193       if(key_check_press.key_event & KEY_LEFT)
194       {
195         // 获取当前KEY_LEFT引脚电平,如果是低电平,则认为LEFT按键被按下
196         if(HAL_GPIO_ReadPin(KEY_LEFT_GPIO_Port,KEY_LEFT_Pin) == GPIO_PIN_RESET)
197         {
198           key_event |= KEY_LEFT;  // 记录app按键任务
199         }
200         key_check_press.key_event ^= KEY_LEFT;  // 删除按键中断任务
201       }
202       
203       // 如果按键任务记录为KEY_DOWN
204       if(key_check_press.key_event & KEY_DOWN)
205       {
206         // 获取当前KEY_DOWN引脚电平,如果是低电平,则认为DOWN按键被按下
207         if(HAL_GPIO_ReadPin(KEY_DOWN_GPIO_Port,KEY_DOWN_Pin) == GPIO_PIN_RESET)
208         {
209           key_event |= KEY_DOWN;  // 记录app按键任务
210         }
211         key_check_press.key_event ^= KEY_DOWN;  // 删除按键中断任务
212       }
213       
214       // 如果按键任务记录为KEY_RIGHT
215       if(key_check_press.key_event & KEY_RIGHT)
216       {
217         // 获取当前KEY_RIGHT引脚电平,如果是低电平,则认为RIGHT按键被按下
218         if(HAL_GPIO_ReadPin(KEY_RIGHT_GPIO_Port,KEY_RIGHT_Pin) == GPIO_PIN_RESET)
219         {
220           key_event |= KEY_RIGHT;   // 记录app按键任务
221         }
222         key_check_press.key_event ^= KEY_RIGHT;   // 删除按键中断任务
223       }
224     }
225   }
226   //如果有记录给app的按键任务,代表真的有按钮按下,则执行回调函数
227   if(key_event && pFkey_cb)
228   {
229     pFkey_cb(key_event);
230   }
231 }

留给应用层调用注册按键回调的函数,用于将轮询后确认的按键信息,传递给应用层使用。

155 void KEY_RegisterCb(key_cb cb)
156 {
157   if(cb != 0)
158   {
159     pFkey_cb = cb;
160   }
161 }

6 05-光敏二极管实验

光敏二极管在不同的光照强度下,它的out引脚输出的电压不同。所以此实验,我们利用STM32L4的ADC功能,去采集光敏二极管的引脚输出电压,以此能够获取到当前环境的光照情况。

6.1 STM32L476 ADC简介

STM32L476一共有3个ADC(ADC1、ADC2、ADC3),3个ADC都可以进行独立的工作,每个ADC都支持12位精度的采样。

每个ADC最多有19个多路复用的通道,每个通道的AD转换都是可以执行单一、连续扫描或者不连续扫描的。

ADC的参考电压取决于VREF+引脚的输入电压,在开发板上,我们接好miniUSB供电,此引脚电压范围在3.2V~3.3V之间,代码中我们默认取3.3V为参考电压。

ADC引脚的输入电压范围:VREF- ≤ VIN ≤ VREF+ ,在开发板上,就是大于0V,小于3.3V。

在这个例程中,我们将以ADC1的通道16(也就是PB1引脚)来采集光敏二极管的输出电压。

6.2 硬件设计

选择STM32L4引脚PB1作为光敏二极管的ADC采集引脚。

6.3 实验准备

  1. 使用miniUSB线及10pin排线,通过Jlink仿真器连接PC端和开发板。
  2. 使用miniUSB线,连接PC与开发板USB接口。
  3. 将SW1拨到DBG端,SW2拨到MCU。
  4. 使用Keil打开基础实验 05-光敏二极管实验工程。
  5. 使用Xshell打开Jlink虚拟出的COM口
  6. 下载程序,并完成功能测试。

6.4 实验验证

下载完成后,打开COM口,可以看到每隔500ms打印一次采集到的ADC数据。 红色字体部分,是正常的室内光照强度时采集的电压;绿色字体部分,是打开手机手电筒照射光敏二极管时采集的电压。可以看到明显的电压差值。

6.5 源码详解

本节中的源码说明,仅针对此例程中的重要功能,详细的源码介绍请大家参照代码后的注释。

6.5.1 stm32l4xx_hal_conf.h

此文件位于“05-光敏二极管实验\Inc”路径中,主要用途是选择使能此例程使用到的库文件。

此例程我们主要给大家展示STM32L4的ADC功能,所以我们宏定义中打开ADC相关的。

103 // 使能的宏
104 #define HAL_MODULE_ENABLED          // 芯片
105 #define HAL_FLASH_MODULE_ENABLED    // Flash
106 #define HAL_PWR_MODULE_ENABLED      // 电源
107 #define HAL_RCC_MODULE_ENABLED      // 时钟
108 #define HAL_CORTEX_MODULE_ENABLED   // NVIC
109 
110 #define HAL_GPIO_MODULE_ENABLED     // GPIO
111 #define HAL_UART_MODULE_ENABLED     // UART
112 #define HAL_DMA_MODULE_ENABLED      // DMA  
113 #define HAL_ADC_MODULE_ENABLED      // ADC

6.5.2 main.c

main函数,我们的例程由此处开始执行,首先调用HAL_Init()函数初始化我们的模块,接着调用SystemClock_Config()函数初始化此例程用到的时钟,具体有哪些时钟被初始化,在gyu_util.c部分有详细说明。

接下来我们初始化了串口部分,目的是打印按键按下的调试信息。

接下来是ADC引脚初始化。

在最后的while()循环中,我们调用ADC值采集函数,每个500ms采集一次,并且将采集值转换成电压值,格式化打印到串口显示。

33 int main(void)
34 {
35   uint16_t ad_value = 0;
36 
37   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
38 	// 重置所有外设、flash界面以及系统时钟
39   HAL_Init();
40 
41 	// 配置系统时钟(包含振荡器、系统时钟、总线时钟等等)
42   SystemClock_Config();
43 	
44   // 初始化串口USART1
45   MX_USART1_UART_Init();
46 
47   // 初始化ADC1
48   MX_ADC1_Init();
49   
50   // 
51   while (1)
52   {
53     HAL_Delay(500);
54     ad_value = HAL_ADC_Read();    // 获取ADC采集值
55     printf("Adc_value = %.2f\r\n",ad_value*3.3/4095);     // 转换ADC采集为真实电压,并且打印到串口显示
56   }
57 }

6.5.3 gyu_util.c

时钟初始化函数,用于配置我们模块运行的系统时钟、AHB高性能总线时钟、APB外设总线时钟以及单个外设的时钟。

主要包含了三个部分的初始化配置。

1.内部或者外部振荡器选择,也就是选择时钟信号的来源,是内部振荡,还是外部晶振。

2.时钟配置,选择系统、AHB总线及APB总线的时钟来源。

3.外设时钟配置,选择外设时钟来源。

为了给大家比较全面的展示各个时钟,我们振荡器选择HSI(内部16MHz高频)、HSE(外部8MHz高频)以及LSE(外部32.768KHz低频)三个。选择HSE作为PLL(锁相回路)时钟源,配置PLLCLK为80MHz。配置系统时钟SYSCLK、AHB高性能总线、APB外设总线(APB1及APB2)为80MHz。另外我们还分别配置了ADC、UART以及I2C的外设时钟。

基础实验中的其他例程,大部分都是使用的相同的时钟配置函数,有特殊的时钟使用,将会在对应例程的源码详解中做针对性说明。

 49 void SystemClock_Config(void)
 50 {
 51   RCC_OscInitTypeDef RCC_OscInitStruct;     // 定义RCC内部/外部振荡器结构体
 52   RCC_ClkInitTypeDef RCC_ClkInitStruct;     // 定义RCC系统,AHB和APB总线时钟配置结构体
 53   RCC_PeriphCLKInitTypeDef PeriphClkInit;   // 定义RCC扩展时钟结构体
 54   
 55   // 配置LSE驱动器功能为低驱动能力
 56   __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
 57 
 58   // 初始化CPU,AHB和APB总线时钟
 59   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE
 60                               |RCC_OSCILLATORTYPE_LSE;        // 设置需要配置的振荡器为HSI、HSE、LSE
 61   // 配置HSE
 62   RCC_OscInitStruct.HSEState = RCC_HSE_ON;                    // 激活HSE时钟(开发板外部为8MHz)
 63   // 配置LSE
 64   RCC_OscInitStruct.LSEState = RCC_LSE_ON;                    // 激活LSE时钟(32.768KHz,低驱动)
 65   // 配置HSI
 66   RCC_OscInitStruct.HSIState = RCC_HSI_ON;                    // 激活HSI时钟
 67   RCC_OscInitStruct.HSICalibrationValue = 16;                 // 配置HSI为16MHz     
 68   // 配置PLL
 69   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;                // 打开PLL
 70   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;        // 选择HSE时钟作为PLL入口时钟源,8MHz
 71   RCC_OscInitStruct.PLL.PLLM = 1;                             // 配置PLL VCO输入分频为1,8/1 = 8MHz
 72   RCC_OscInitStruct.PLL.PLLN = 20;                            // 配置PLL VCO输入倍增为20,8MHz*20 = 160MHz
 73   RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;                 // SAI时钟7分频,160/7 = 22.857143MHz
 74   RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;                 // SDMMC、RNG、USB时钟2分频,160/2 = 80MHz
 75   RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;                 // 系统主时钟分区2分频,160/2 = 80MHz
 76   // RCC时钟配置,出错则进入错误处理函数
 77   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 78   {
 79     _Error_Handler(__FILE__, __LINE__);
 80   }
 81   
 82   // 初始化CPU,AHB和APB总线时钟
 83   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
 84                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; // 需要配置的时钟HCLK、SYSCLK、PCLK1、PCLK2
 85   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;             // 配置系统时钟为PLLCLK输入,80MHz
 86   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;                    // AHB时钟为系统时钟1分频,80/1 = 80MHz
 87   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;                     // APB1时钟为系统时钟1分频,80/1 = 80MHz
 88   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;                     // APB2时钟为系统时钟1分频,80/1 = 80MHz
 89   // RCC时钟配置,出错则进入错误处理函数
 90   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) // HCLK=80MHz,Vcore=3.3V,所以选择SW4(FLASH_LATENCY_4)
 91    {
 92     _Error_Handler(__FILE__, __LINE__);
 93   }
 94 
 95   // 初始化外设时钟
 96   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART2
 97                               |RCC_PERIPHCLK_LPUART1|RCC_PERIPHCLK_LPTIM1
 98                               |RCC_PERIPHCLK_I2C2|RCC_PERIPHCLK_ADC;  // 需要初始化的外设时钟:USART1、USART2、LPUART1、LPTIM1、I2C2、ADC
 99   PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;     // 配置串口USART1时钟为PCLK2,80MHz
100   PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;     // 配置串口USART2时钟为PCLK1,80MHz
101   PeriphClkInit.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_HSI;     // 配置LPUART时钟为HSI,16MHz
102   PeriphClkInit.I2c2ClockSelection = RCC_I2C2CLKSOURCE_PCLK1;         // 配置I2C2时钟为PCLK1,80MHz
103   PeriphClkInit.Lptim1ClockSelection = RCC_LPTIM1CLKSOURCE_LSE;       // 配置LPTIM1时钟为LSE,32.768KHz
104   PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;         // 配置ADC时钟为PLLSAI1,现在为80MHz,下面会重新定义
105   PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_HSE;            // 配置PLLSAI1时钟为HSE,8MHz
106   PeriphClkInit.PLLSAI1.PLLSAI1M = 1;                                 // 配置PLLSAI1分频为1
107   PeriphClkInit.PLLSAI1.PLLSAI1N = 8;                                 // 配置PLLSAI1倍增为8
108   PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7;                     // SAI时钟7分频,64/7 = 9.142857MHz
109   PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2;                     // SDMMC、RNG、USB时钟2分频,64/2 = 32MHz
110   PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2;                     // 系统主时钟分区2分频,64/2 = 32MHz             
111   PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK;        // 配置PLLSAI1输出为ADC1时钟,也就是配置ADC1时钟,32MHz
112   // 外设时钟配置,出错则进入错误处理函数
113   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
114   {
115     _Error_Handler(__FILE__, __LINE__);
116   }
117 
118   // 配置内部主稳压器输出电压,配置为稳压器输出电压范围1模式,也就是:典型输出电压为1.2V,系统频率高达80MHz
119   if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
120   {
121     _Error_Handler(__FILE__, __LINE__);
122   }
123 
124   // 配置系统定时器中断时间,配置为HCLK的千分频
125   HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
126 
127   // 配置系统定时器,配置为HCLK
128   HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
129 
130   // 系统定时器中断配置,设置系统定时器中断优先级最高(为0),且子优先级最高(为0)
131   HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
132 }

6.5.4 gyu_adc.c

ADC初始化函数,配置12位采样分辨率,配置2.5倍ADC时钟周期的采样频率。

选择ADC通道16(CH16)作为此次的ADC引脚(也就是PB1)。

40 void MX_ADC1_Init(void)
41 {
42   // 定义常规ADC通道结构体
43   ADC_ChannelConfTypeDef sConfig;
44 
45   // 初始化ADC
46   hadc1.Instance = ADC1;                              // ADC寄存器地址,定义为ADC1
47   hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;   // 没有预分频器的ADC异步时钟
48   hadc1.Init.Resolution = ADC_RESOLUTION_12B;         // 12位采样分辨率
49   // 初始化ADC,如果失败,则进入错误处理程序
50   if (HAL_ADC_Init(&hadc1) != HAL_OK)
51   {
52     _Error_Handler(__FILE__, __LINE__);
53   }
54 
55   // 配置ADC通道
56   sConfig.Channel = ADC_CHANNEL_16;                 // 配置为ADC通道16
57   sConfig.Rank = ADC_REGULAR_RANK_1;                // 指定ADC规格组中的排名
58   sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;  // 采样时间配置为2.5个ADC时钟周期
59   sConfig.SingleDiff = ADC_SINGLE_ENDED;            // ADC通道结束设置为单端 
60   sConfig.OffsetNumber = ADC_OFFSET_NONE;           // 禁用ADC偏移
61   sConfig.Offset = 0;                               // 定义从原始量中减去的偏移量
62   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)  // 配置ADC通道
63   {
64     _Error_Handler(__FILE__, __LINE__);   // 如果出错,进入错误处理
65   }
66 
67 }

重新定义ADC的硬件引脚,可以看到,配置PB1为ADC引脚。

77 void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle)
78 {
79   GPIO_InitTypeDef GPIO_InitStruct;
80   if(adcHandle->Instance==ADC1)
81   {
82     // 使能GPIOB引脚时钟(选择的ADC引脚为PB1)
83     __HAL_RCC_GPIOB_CLK_ENABLE();
84 
85     // 使能ADC时钟
86     __HAL_RCC_ADC_CLK_ENABLE();
87   
88     // 初始化ADC引脚配置
89     GPIO_InitStruct.Pin = GPIO_PIN_1;                     // 选择引脚编号1
90     GPIO_InitStruct.Mode = GPIO_MODE_ANALOG_ADC_CONTROL;  // 配置为ADC引脚
91     GPIO_InitStruct.Pull = GPIO_NOPULL;                   // 无上下拉
92     HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);               // 初始化PB1引脚
93   }
94 }

用于获取ADC采集值的函数,经过一系列的API函数调用,我们获取到最终的adcValue。

104 uint16_t HAL_ADC_Read(void)
105 {
106   uint16_t ad_value = 0;
107   
108   // 启动ADC转换
109   HAL_ADC_Start(&hadc1);  
110   
111   // 等待ADC转换完成
112   HAL_ADC_PollForConversion(&hadc1, 50);
113   
114   // 检查是否已经完成转换  
115   if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC)) 
116   {
117     // 获取采集到的ADC值
118     ad_value = HAL_ADC_GetValue(&hadc1);
119   }
120   
121   return ad_value;  // 返回ADC采集值
122 }

7 06-DAC实验

此实验我们将会配置DAC1的通道1,作为模拟电压的输出引脚,并且配置一个ADC引脚,采集DAC输出的电压,并将电压值格式化打印到串口显示。

7.1 STM32L476 DAC简介

DAC模块是一个12位电压输出数模转换器。 DAC可配置为8位或12位模式,并可与DMA控制器配合使用。在12位模式下,数据可以左对齐或右对齐。 DAC有两个输出通道,每个通道都有自己的转换器。在双DAC通道模式下,当两个通道组合在一起进行同步更新操作时,可以单独或同时完成转换。

DAC的主要特性如下:

•两个DAC转换器:每个转换器一个输出通道

•12位模式下的左或右数据对齐

•同步更新功能

•噪声波和三角波生成

•双DAC通道,用于独立或同步转换

•每个通道的DMA功能,包括DMA欠载错误检测

•转换的外部触发器

•DAC输出通道缓冲/非缓冲模式

•缓冲偏移校准

•每个DAC输出可以与DAC_OUTx输出引脚断开

•DAC输出连接到片上外设

•采样和保持模式,用于在停止模式下进行低功耗操作

•输入电压参考,VREF +

7.2 硬件设计

选择STM32L4引脚PA4作为模拟输出(DAC)引脚,配置PA7作为ADC引脚。 此实验测试的时候,由于选择的PA4及PA7引脚被显示屏占用,所以我们需要拔下显示屏,然后使用杜邦线短接PA4及PA7引脚。

7.3 实验准备

  1. 使用miniUSB线及10pin排线,通过Jlink仿真器连接PC端和开发板。
  2. 使用miniUSB线,连接PC与开发板USB接口。
  3. 将SW1拨到DBG端,SW2拨到MCU。
  4. 使用Keil打开基础实验 06-DAC实验工程。
  5. 使用Xshell打开Jlink虚拟出的COM口
  6. 下载程序,并完成功能测试。

7.4 实验验证

下载完成后,打开COM口,可以看到每隔500ms打印一次采集到的ADC数据。

我们默认配置DAC引脚输出2000(也就是1.6V)电压,可以看到ADC采集到的数据为1.56V,这个是ADC采集的偏移量导致的。

7.5 源码详解

本节中的源码说明,仅针对此例程中的重要功能,详细的源码介绍请大家参照代码后的注释。

7.5.1 stm32l4xx_hal_conf.h

此文件位于“06-光敏二极管实验\Inc”路径中,主要用途是选择使能此例程使用到的库文件。

此例程我们主要给大家展示STM32L4的DAC功能,所以我们宏定义中打开DAC相关的。

103 // 使能的宏
104 #define HAL_MODULE_ENABLED          // 芯片
105 #define HAL_FLASH_MODULE_ENABLED    // Flash
106 #define HAL_PWR_MODULE_ENABLED      // 电源
107 #define HAL_RCC_MODULE_ENABLED      // 时钟
108 #define HAL_CORTEX_MODULE_ENABLED   // NVIC
109 
110 #define HAL_GPIO_MODULE_ENABLED     // GPIO
111 #define HAL_UART_MODULE_ENABLED     // UART
112 #define HAL_DMA_MODULE_ENABLED      // DMA  
113 #define HAL_ADC_MODULE_ENABLED      // ADC
114 #define HAL_DAC_MODULE_ENABLED      // DAC

7.5.2 main.c

main函数,我们的例程由此处开始执行,首先调用HAL_Init()函数初始化我们的模块,接着调用SystemClock_Config()函数初始化此例程用到的时钟,具体有哪些时钟被初始化,在gyu_util.c部分有详细说明。

接下来我们初始化了串口部分,目的是打印按键按下的调试信息。

接下来分别初始化了ADC以及DAC引脚配置。

在最后的while()循环中,我们设置DAC引脚的输出电压(默认设置输出1.6V),然后我们调用ADC值采集函数采集这个引脚电压,并且每隔500ms将采集值转换成电压值,格式化打印到串口显示。

33 int main(void)
34 {
35   uint16_t ad_value = 0;
36 
37   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
38 	// 重置所有外设、flash界面以及系统时钟
39   HAL_Init();
40 
41 	// 配置系统时钟(包含振荡器、系统时钟、总线时钟等等)
42   SystemClock_Config();
43 	
44   // 初始化串口USART1
45   MX_USART1_UART_Init();
46 
47   // 初始化ADC1
48   MX_ADC1_Init();
49 
50   // 初始化DAC1
51   MX_DAC1_Init();
52   
53   // 
54   while (1)
55   {
56     HAL_Delay(500);
57     
58     HAL_DAC_Set(2000);    // 设置2000DAC输出值(1.6V)
59     
60     ad_value = HAL_ADC_Read();        // 获取ADC采集值
61     printf("adc = %d\r\n",ad_value);  // 打印ADC采集值
62     printf("Adc_value = %.2fV\r\n",ad_value*3.3/4095);   // 转换ADC采集为真实电压,并且打印到串口显示
63   }
64 }

7.5.3 gyu_util.c

时钟初始化函数,用于配置我们模块运行的系统时钟、AHB高性能总线时钟、APB外设总线时钟以及单个外设的时钟。

主要包含了三个部分的初始化配置。

1.内部或者外部振荡器选择,也就是选择时钟信号的来源,是内部振荡,还是外部晶振。

2.时钟配置,选择系统、AHB总线及APB总线的时钟来源。

3.外设时钟配置,选择外设时钟来源。

为了给大家比较全面的展示各个时钟,我们振荡器选择HSI(内部16MHz高频)、HSE(外部8MHz高频)以及LSE(外部32.768KHz低频)三个。选择HSE作为PLL(锁相回路)时钟源,配置PLLCLK为80MHz。配置系统时钟SYSCLK、AHB高性能总线、APB外设总线(APB1及APB2)为80MHz。另外我们还分别配置了ADC、UART以及I2C的外设时钟。

基础实验中的其他例程,大部分都是使用的相同的时钟配置函数,有特殊的时钟使用,将会在对应例程的源码详解中做针对性说明。

 49 void SystemClock_Config(void)
 50 {
 51   RCC_OscInitTypeDef RCC_OscInitStruct;     // 定义RCC内部/外部振荡器结构体
 52   RCC_ClkInitTypeDef RCC_ClkInitStruct;     // 定义RCC系统,AHB和APB总线时钟配置结构体
 53   RCC_PeriphCLKInitTypeDef PeriphClkInit;   // 定义RCC扩展时钟结构体
 54   
 55   // 配置LSE驱动器功能为低驱动能力
 56   __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
 57 
 58   // 初始化CPU,AHB和APB总线时钟
 59   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE
 60                               |RCC_OSCILLATORTYPE_LSE;        // 设置需要配置的振荡器为HSI、HSE、LSE
 61   // 配置HSE
 62   RCC_OscInitStruct.HSEState = RCC_HSE_ON;                    // 激活HSE时钟(开发板外部为8MHz)
 63   // 配置LSE
 64   RCC_OscInitStruct.LSEState = RCC_LSE_ON;                    // 激活LSE时钟(32.768KHz,低驱动)
 65   // 配置HSI
 66   RCC_OscInitStruct.HSIState = RCC_HSI_ON;                    // 激活HSI时钟
 67   RCC_OscInitStruct.HSICalibrationValue = 16;                 // 配置HSI为16MHz     
 68   // 配置PLL
 69   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;                // 打开PLL
 70   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;        // 选择HSE时钟作为PLL入口时钟源,8MHz
 71   RCC_OscInitStruct.PLL.PLLM = 1;                             // 配置PLL VCO输入分频为1,8/1 = 8MHz
 72   RCC_OscInitStruct.PLL.PLLN = 20;                            // 配置PLL VCO输入倍增为20,8MHz*20 = 160MHz
 73   RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;                 // SAI时钟7分频,160/7 = 22.857143MHz
 74   RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;                 // SDMMC、RNG、USB时钟2分频,160/2 = 80MHz
 75   RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;                 // 系统主时钟分区2分频,160/2 = 80MHz
 76   // RCC时钟配置,出错则进入错误处理函数
 77   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 78   {
 79     _Error_Handler(__FILE__, __LINE__);
 80   }
 81   
 82   // 初始化CPU,AHB和APB总线时钟
 83   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
 84                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; // 需要配置的时钟HCLK、SYSCLK、PCLK1、PCLK2
 85   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;             // 配置系统时钟为PLLCLK输入,80MHz
 86   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;                    // AHB时钟为系统时钟1分频,80/1 = 80MHz
 87   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;                     // APB1时钟为系统时钟1分频,80/1 = 80MHz
 88   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;                     // APB2时钟为系统时钟1分频,80/1 = 80MHz
 89   // RCC时钟配置,出错则进入错误处理函数
 90   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) // HCLK=80MHz,Vcore=3.3V,所以选择SW4(FLASH_LATENCY_4)
 91    {
 92     _Error_Handler(__FILE__, __LINE__);
 93   }
 94 
 95   // 初始化外设时钟
 96   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART2
 97                               |RCC_PERIPHCLK_LPUART1|RCC_PERIPHCLK_LPTIM1
 98                               |RCC_PERIPHCLK_I2C2|RCC_PERIPHCLK_ADC;  // 需要初始化的外设时钟:USART1、USART2、LPUART1、LPTIM1、I2C2、ADC
 99   PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;     // 配置串口USART1时钟为PCLK2,80MHz
100   PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;     // 配置串口USART2时钟为PCLK1,80MHz
101   PeriphClkInit.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_HSI;     // 配置LPUART时钟为HSI,16MHz
102   PeriphClkInit.I2c2ClockSelection = RCC_I2C2CLKSOURCE_PCLK1;         // 配置I2C2时钟为PCLK1,80MHz
103   PeriphClkInit.Lptim1ClockSelection = RCC_LPTIM1CLKSOURCE_LSE;       // 配置LPTIM1时钟为LSE,32.768KHz
104   PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;         // 配置ADC时钟为PLLSAI1,现在为80MHz,下面会重新定义
105   PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_HSE;            // 配置PLLSAI1时钟为HSE,8MHz
106   PeriphClkInit.PLLSAI1.PLLSAI1M = 1;                                 // 配置PLLSAI1分频为1
107   PeriphClkInit.PLLSAI1.PLLSAI1N = 8;                                 // 配置PLLSAI1倍增为8
108   PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7;                     // SAI时钟7分频,64/7 = 9.142857MHz
109   PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2;                     // SDMMC、RNG、USB时钟2分频,64/2 = 32MHz
110   PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2;                     // 系统主时钟分区2分频,64/2 = 32MHz             
111   PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK;        // 配置PLLSAI1输出为ADC1时钟,也就是配置ADC1时钟,32MHz
112   // 外设时钟配置,出错则进入错误处理函数
113   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
114   {
115     _Error_Handler(__FILE__, __LINE__);
116   }
117 
118   // 配置内部主稳压器输出电压,配置为稳压器输出电压范围1模式,也就是:典型输出电压为1.2V,系统频率高达80MHz
119   if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
120   {
121     _Error_Handler(__FILE__, __LINE__);
122   }
123 
124   // 配置系统定时器中断时间,配置为HCLK的千分频
125   HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
126 
127   // 配置系统定时器,配置为HCLK
128   HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
129 
130   // 系统定时器中断配置,设置系统定时器中断优先级最高(为0),且子优先级最高(为0)
131   HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
132 }

7.5.4 gyu_dac.c

DAC初始化函数,配置DAC1通道1(也就是PA4引脚)为DAC输出引脚。

37 void MX_DAC1_Init(void)
38 {
39   hdac1.Instance = DAC1;                // 配置为DAC1
40   if (HAL_DAC_Init(&hdac1) != HAL_OK)   // 初始化DAC1
41   {
42     _Error_Handler(__FILE__, __LINE__);
43   }
44   
45   // DAC通道配置结构体定义
46   DAC_ChannelConfTypeDef sConfig;
47   sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE;  //DAC模式
48   sConfig.DAC_Trigger=DAC_TRIGGER_NONE;                   // 不使用触发功能
49   sConfig.DAC_OutputBuffer=DAC_OUTPUTBUFFER_DISABLE;      // DAC1输出缓冲关闭
50 	sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE;  //不连接到片内外设
51   
52   // 初始化通道CH1配置
53   if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_1) != HAL_OK)
54   {
55     _Error_Handler(__FILE__, __LINE__);
56   }
57   
58   HAL_DAC_Start(&hdac1,DAC_CHANNEL_1);  //开启DAC通道1
59 }

重新定义DAC的硬件引脚,可以看到,配置PA4为DAC引脚。

70 void HAL_DAC_MspInit(DAC_HandleTypeDef* hdac)
71 {
72   GPIO_InitTypeDef GPIO_InitStruct;
73   if(hdac->Instance==DAC1)                  // 判断是否是DAC1
74   {
75     __HAL_RCC_DAC1_CLK_ENABLE();            // 使能DAC时钟
76     
77     GPIO_InitStruct.Pin = GPIO_PIN_4;       // 选择PA4
78     GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;// 配置模拟模式
79     GPIO_InitStruct.Pull = GPIO_NOPULL;     // 无上下拉
80     HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); // 初始化PA4引脚配置
81   }
82 }

设置DAC引脚输出电压,value为单元值,不是真正的电压值大小。 模拟电压值(范围:0~4095,对应0~3.3V)。

92 void HAL_DAC_Set(uint16_t value)
93 {
94   HAL_DAC_SetValue(&hdac1,DAC_CHANNEL_1,DAC_ALIGN_12B_R,value); // 配置CH1 12位右对齐模拟输出
95 }