打开主菜单

谷雨文档中心 β

更改

NBDK-L4:基础实验教程

添加11,207字节2019年1月21日 (一) 15:21
gyu_buzzer.c
=== 实验验证 ===
下载完成后,按下开发板上按键S1,蜂鸣器发声,按下S3,蜂鸣器停止。
 
=== 源码详解 ===
本节中的源码说明,仅针对此例程中的重要功能,详细的源码介绍请大家参照代码后的注释。
 
==== stm32l4xx_hal_conf.h ====
此文件位于“03-蜂鸣器实验\Inc”路径中,主要用途是选择使能此例程使用到的库文件,一般情况下,我们默认需要使用的为前5个,包含芯片、flash、电源、时钟以及NVIC。
 
此例程因为我们需要展示IO的使用,所以我们额外使能 HAL_GPIO_MODULE_ENABLED。<syntaxhighlight lang="c" line="1" start="103">
// 使能的宏
#define HAL_MODULE_ENABLED // 芯片
#define HAL_FLASH_MODULE_ENABLED // Flash
#define HAL_PWR_MODULE_ENABLED // 电源
#define HAL_RCC_MODULE_ENABLED // 时钟
#define HAL_CORTEX_MODULE_ENABLED // NVIC
 
#define HAL_GPIO_MODULE_ENABLED // GPIO
</syntaxhighlight>
 
==== main.c ====
main函数,我们的例程由此处开始执行,首先调用HAL_Init()函数初始化我们的模块,接着调用SystemClock_Config()函数初始化此例程用到的时钟,具体有哪些时钟被初始化,在gyu_util.c部分有详细说明。
 
接下来是初始化按键,有关按键的部分会在04-按键实验中给大家讲解。
 
最后我们初始化蜂鸣器引脚,配置蜂鸣器引脚为默认输出低电平。
 
<syntaxhighlight lang="c++" line="1" start="36">
int main(void)
{
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
// 重置所有外设、flash界面以及系统时钟
HAL_Init();
 
// 配置系统时钟(包含振荡器、系统时钟、总线时钟等等)
SystemClock_Config();
// 初始化按键引脚
MX_KEY_Init();
//注册按钮回调函数
KEY_RegisterCb(AppKey_cb);
//初始化蜂鸣器
Buzzer_Init();
//
while (1)
{
KEY_Poll(); // 按键轮训,监测是否有按键被按下
}
}
</syntaxhighlight>在按键的处理回调函数中,我们可以看到,按键S1(UP)按下后,设置蜂鸣器引脚高电平,按键S3(DOWN)按下后,设置蜂鸣器引脚低电平<syntaxhighlight lang="c" line="1" start="69">
void AppKey_cb(uint8_t key)
{
// 如果有相应按键被按下,则串口打印调试信息
if(key & KEY_UP)
{
Motor_SET(GPIO_PIN_SET);
}
if(key & KEY_LEFT)
{
//
}
if(key & KEY_DOWN)
{
Motor_SET(GPIO_PIN_RESET);
}
if(key & KEY_RIGHT)
{
//
}
}
</syntaxhighlight>
 
==== gyu_util.c ====
时钟初始化函数,用于配置我们模块运行的系统时钟、AHB高性能总线时钟、APB外设总线时钟以及单个外设的时钟。
 
主要包含了三个部分的初始化配置。
 
1.内部或者外部振荡器选择,也就是选择时钟信号的来源,是内部振荡,还是外部晶振。
 
2.时钟配置,选择系统、AHB总线及APB总线的时钟来源。
 
3.外设时钟配置,选择外设时钟来源。
 
为了给大家比较全面的展示各个时钟,我们振荡器选择HSI(内部16MHz高频)、HSE(外部8MHz高频)以及LSE(外部32.768KHz低频)三个。选择HSE作为PLL(锁相回路)时钟源,配置PLLCLK为80MHz。配置系统时钟SYSCLK、AHB高性能总线、APB外设总线(APB1及APB2)为80MHz。另外我们还分别配置了ADC、UART以及I2C的外设时钟。
 
基础实验中的其他例程,大部分都是使用的相同的时钟配置函数,有特殊的时钟使用,将会在对应例程的源码详解中做针对性说明。<syntaxhighlight lang="c++" line="1" start="49">
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct; // 定义RCC内部/外部振荡器结构体
RCC_ClkInitTypeDef RCC_ClkInitStruct; // 定义RCC系统,AHB和APB总线时钟配置结构体
RCC_PeriphCLKInitTypeDef PeriphClkInit; // 定义RCC扩展时钟结构体
// 配置LSE驱动器功能为低驱动能力
__HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
 
// 初始化CPU,AHB和APB总线时钟
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE
|RCC_OSCILLATORTYPE_LSE; // 设置需要配置的振荡器为HSI、HSE、LSE
// 配置HSE
RCC_OscInitStruct.HSEState = RCC_HSE_ON; // 激活HSE时钟(开发板外部为8MHz)
// 配置LSE
RCC_OscInitStruct.LSEState = RCC_LSE_ON; // 激活LSE时钟(32.768KHz,低驱动)
// 配置HSI
RCC_OscInitStruct.HSIState = RCC_HSI_ON; // 激活HSI时钟
RCC_OscInitStruct.HSICalibrationValue = 16; // 配置HSI为16MHz
// 配置PLL
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; // 打开PLL
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; // 选择HSE时钟作为PLL入口时钟源,8MHz
RCC_OscInitStruct.PLL.PLLM = 1; // 配置PLL VCO输入分频为1,8/1 = 8MHz
RCC_OscInitStruct.PLL.PLLN = 20; // 配置PLL VCO输入倍增为20,8MHz*20 = 160MHz
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; // SAI时钟7分频,160/7 = 22.857143MHz
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; // SDMMC、RNG、USB时钟2分频,160/2 = 80MHz
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; // 系统主时钟分区2分频,160/2 = 80MHz
// RCC时钟配置,出错则进入错误处理函数
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
// 初始化CPU,AHB和APB总线时钟
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; // 需要配置的时钟HCLK、SYSCLK、PCLK1、PCLK2
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; // 配置系统时钟为PLLCLK输入,80MHz
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; // AHB时钟为系统时钟1分频,80/1 = 80MHz
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; // APB1时钟为系统时钟1分频,80/1 = 80MHz
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // APB2时钟为系统时钟1分频,80/1 = 80MHz
// RCC时钟配置,出错则进入错误处理函数
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) // HCLK=80MHz,Vcore=3.3V,所以选择SW4(FLASH_LATENCY_4)
{
_Error_Handler(__FILE__, __LINE__);
}
 
// 初始化外设时钟
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART2
|RCC_PERIPHCLK_LPUART1|RCC_PERIPHCLK_LPTIM1
|RCC_PERIPHCLK_I2C2|RCC_PERIPHCLK_ADC; // 需要初始化的外设时钟:USART1、USART2、LPUART1、LPTIM1、I2C2、ADC
PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2; // 配置串口USART1时钟为PCLK2,80MHz
PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1; // 配置串口USART2时钟为PCLK1,80MHz
PeriphClkInit.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_HSI; // 配置LPUART时钟为HSI,16MHz
PeriphClkInit.I2c2ClockSelection = RCC_I2C2CLKSOURCE_PCLK1; // 配置I2C2时钟为PCLK1,80MHz
PeriphClkInit.Lptim1ClockSelection = RCC_LPTIM1CLKSOURCE_LSE; // 配置LPTIM1时钟为LSE,32.768KHz
PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1; // 配置ADC时钟为PLLSAI1,现在为80MHz,下面会重新定义
PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_HSE; // 配置PLLSAI1时钟为HSE,8MHz
PeriphClkInit.PLLSAI1.PLLSAI1M = 1; // 配置PLLSAI1分频为1
PeriphClkInit.PLLSAI1.PLLSAI1N = 8; // 配置PLLSAI1倍增为8
PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7; // SAI时钟7分频,64/7 = 9.142857MHz
PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2; // SDMMC、RNG、USB时钟2分频,64/2 = 32MHz
PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2; // 系统主时钟分区2分频,64/2 = 32MHz
PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK; // 配置PLLSAI1输出为ADC1时钟,也就是配置ADC1时钟,32MHz
// 外设时钟配置,出错则进入错误处理函数
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
 
// 配置内部主稳压器输出电压,配置为稳压器输出电压范围1模式,也就是:典型输出电压为1.2V,系统频率高达80MHz
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
 
// 配置系统定时器中断时间,配置为HCLK的千分频
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
 
// 配置系统定时器,配置为HCLK
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
 
// 系统定时器中断配置,设置系统定时器中断优先级最高(为0),且子优先级最高(为0)
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
</syntaxhighlight>
 
==== gyu_buzzer.c ====
蜂鸣器引脚初始化函数,初始化PB2推挽输出低电平。<syntaxhighlight lang="c++" line="1" start="31">
void Buzzer_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure; // 定义引脚参数结构体
 
__HAL_RCC_GPIOB_CLK_ENABLE(); // 使能GPIOB时钟
 
GPIO_InitStructure.Pin= GPIO_PIN_2; // 引脚编号为2
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; // 推挽输出
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_LOW; // 低频率
GPIO_InitStructure.Pull = GPIO_PULLUP; // 上拉
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure); // 初始化PB2
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_RESET); // 设置PB2默认输出低电平
}
</syntaxhighlight>蜂鸣器引脚电平设置函数,设置为高电平,蜂鸣器发出蜂鸣声,设置低电平,蜂鸣器停止。<syntaxhighlight lang="c" line="1" start="54">
void Buzzer_SET(GPIO_PinState pinSate)
{
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, pinSate); // 设置PB2输出
}
</syntaxhighlight>
== 04-按键中断实验 ==
按键中断实验,是通过外部引脚中断来判断是否有按键被按下,这个在马达以及蜂鸣器实验中其实已经展示过了,这边给大家做一个详细的讲解。我们分别选择PC0、PC1、PC2、PC3这4个引脚作为我们的按键引脚,
 
=== STM32L476 外部中断简介 ===
 
=== 硬件设计 ===
选择STM32L4引脚PC0、PC1、PC2、PC3作为按键的控制引脚。
[[文件:NBDK-SCH-BUTTON.png|边框|居中|无框|434x434像素]]
=== 实验准备 ===
# 使用miniUSB线及10pin排线,通过Jlink仿真器连接PC端和开发板。
# 将SW1拨到DBG端,SW2拨到MCU。
# 使用Keil打开基础实验 03-蜂鸣器实验工程。
# 下载程序,并完成功能测试。
 
=== 实验验证 ===
下载完成后,分别按下开发板上的S1、S2、S3、S4按键,可以看到Xshell中Jlink虚拟的COM口分别打印如下:
[[文件:NBDK-XSHELL-BTN.png|边框|居中|无框|759x759像素]]
=== 源码详解 ===
510
个编辑